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Hamiltonian scattering chaos in a hydrodynamical system 
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Abstract. The dynamics of chaotic scattering in Hamiltonian phase space can be visualized 
by two-dimensional open hydrodynamical systems with velocity fields, which are periodic 
in time. Passive marker particles in the fluid trace out complicated trajectories, which are 
caused by the vortex structure of the fluid; i.e. we encounter a case of Lagrangian turbulence. 
By the examination of a particular model we show the applicability in hydrodynamics of 
ideas and methods which have been useful before in the investigation of systems describing 
chaotic particle scattering. In particular we show the existence of a chaotic saddle, show 
its influence on scattering trajectories and give some quantitative measures for it. 

1. Introduction 

In recent years there has been a growing interest in the phenomenon of chaoticscattering 
(for reviews see [1,2]). In classical dynamics chaotic scattering is created by the 
following mechanism: in phase space there is an infinite set ofunstable localized orbits, 
periodic orbits of arbitrarily long periods and truly chaotic unperiodic orbits. This set 
of localized orbits occupies a subset of measure zero in the phase space only. It is 
called a chaotic saddle A. The stable manifolds of orbits of A reach out into the 
incoming asymptotic region. Whenever a scattering trajectory starts exactly on such a 
stable manifold, it converges towards a localized orbit and will never reach the outgoing 
asymptotic region; it gets stuck in the interaction zone. This happens for a subset of 
initial scattering conditions of measure zero only. All other initial conditions lead to 
generic scattering trajectories having a proper outgoing asymptote. However, generic 
scattering trajectories will run besides the chaotic localized orbits for a finite time and 
the whole stream of incoming particles casts a kind of shadow image of A into the 
outgoing aymptotic region. So it is possible to reconstruct important properties of A 
from scattering measurements. In particular, the scattering functions like the deflection 
function or the the time delay function have singularities on a fractal subset of their 
domain and so they reflect the fractal structure of A. With this picture in mind we 
interpret scattering chaos as the Hamiltonian version of transient chaos 131. 

These are the fundamentals of classical scattering chaos. However, particle scatter- 
ing experiments are done with microscopic systems mainly, where quantum effects are 
essential. In quantum dynamics the whole concept of chaos is less well defined than 
in classical dynamics. Therefore, in order to be able to study the basic mechanism of 
chaotic scattering it  would be desirable to have a truly classical situation where we 
can observe the mechanism of scattering chaos at work. The motion of macroscopic 
rigid bodies is not well suited to this purpose because friction destroys the Hamiltonian 
character of the dynamics. In  addition, the main events of classical mechanics happen 
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not in position space but in phase space and there the trajectories are not displayed 
directly before our eyes. 

Therefore it would be useful to have a system where we have visualized the phase 
space motion of classical scattering chaos directly. In this paper we explain and 
demonstrate by model computations that hydrodynamical systems are able to realize 
this idea. Our visualization of Hamiltonian scattering chaos by an open hydro- 
dynamical system goes along similar patterns to the visualization of bound Hamiltonian 
,&.,Ao h., h.,A--A.r-m-;-ol ~ . r s t a - o  i- n1nc-A h-v n" ---I..:--> :- r l  C1 T...- ! 
I..""., "J I., "."",.."....'"1 "J"Lb"" 111 a C l Y I C "  U"* L1.Y r;npraLLls" 111 L*, 2,. I W U  prewous 
examples of chaotic advection in open hydrodynamical systems and some relations to 
chaotic scattering can be found in [6,7]. 

The aim of this paper is to treat a particular hydrodynamical system (the flow 
through a channel with an obstacle) like a system of particle scattering and to apply 
to it the methods which we have used before in the description of chaotic particle 
scattering [8-111. 

C Jung and E Ziemniak 

2. A hydrodynamical model for chaotic particle scattering 

Consider a channel of finite width W and infinite length and disregard the third 
dimension, i.e. let us consider a system in two-dimensional position space. The coordin- 
ate along the channel is x, the coordinate in transverse direction is y.  Inside the channel 
we place a circular obstacle, the cylinder, with radius R. An incompressible viscid 
fluid is pumped through the channel from the left to the right. We assume that the 
velocity of the fluid is sufficiently small such that far away in front and far away behind 
the cylinder a parabolic velocity profile is created. Only in the direct vicinity behind 
the cylinder we find a more complicated flow pattern which depends sensitively on 
the Reynolds number Re or on the viscosity of the fluid. For a small value of Re the 
flow becomes stationary in the long time limit. For a large value of Re the velocity 
field has a very complicated pattern which is irregular in time. In the following we 
concentrate on the range of Reynolds numbers in between, where an exactly time- 
periodic flow occurs. Behind the cylinder vortices are created, which detach from the 
cylinder and drift down the channel. After some distance they are destroyed by viscosity. 
w e  uuialn a iyplcar harman vurien S L I F ~ L  UL LLnlie Iengin. 

Because of the exact periodicity in time the velocity field cannot be chaotic and 
we d o  not encounter turbulence of the velocity field. In this paper we are interested 
in the study of trajectories of passive marker particles swimming in the given flow. If 
the particles come in sufficiently far away from the middle of the channel, then they 
do not enter the vortex street, they stay in the strip between the vortex street and the 
wall of the channel. Such particles are little affected by the obstacle and pass it quite 
rapidly. However, if the particles come in close to the middle of the channel, then 
they enter the vortex street directly and are whirled around inside the vortices for some 
time. Only a subset of initial conditions of measure zero leads to permanent trapping 
of the particles in the vicinity of the cylinder. Almost all particles escape after some 
time and reach the outgoing asymptotic region, where the motion becomes simple 
again. This temporary trapping of particles and the corresponding temporarily compli- 
cated motion between the trivial initial and trivial final motion is typical for scattering 
chaos or transient chaos. 

The complicated motion in the vicinity of the cylinder is organized around some 
unstable periodic orbits. A transiently chaotic particle trajectory approaches the vicinity 

.,,. * . ._ :_ . I  ,I..-._ ...-... ...... .'-c_:.. I ._.I L 
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of some unstable periodic orbit along its stable manifold, runs beside it for a while, 
switches to the vicinity of some other unstable periodic orbit via a heteroclinic connec- 
tion between these two periodic orbits, stays with this second periodic orbit for a while 
etc until finally it is released into the outgoing asymptotic region along the unstable 
manifolds of the periodic orbits. In the rest of this paper we shall work out and explain 
these ideas in more detail. 

Let us begin by specifying the geometrical arrangement. We choose the unit of 
length such that the width W of the channel has the value W = 0.2. For the radius of 
the cylinder we choose R = 0.05. The cylinder is located in the middle of the channel 
and the zero of the x-axis is chosen such that the centre of the cylinder has the 
coordinates ( x c ,  y J  = (0.25,O.l). This arrangement is plotted in figure 1. 

> 
0.0 X 1.0 

Figure 1. Geometry of the channel and the cylinder in it. The arrows inside the channel 
indicate the incoming parabolic velocity profile. 

The fluid comes in with a parabolic velocity profile as indicated in the figure. More 
precisely: let the velocity components of the fluid in x and y direction be U and U 
respectively. We assume that for x c xc = 0.25 and for x >> x,  = 0.25 we have 

U ( X ,  y j = ~ ~ y j 0 . 2  - y j  ( i j  
u ( x , y ) - 0  (2) 

a$d uo has been given the value uo=6/  W' such that the total incoming flow 
5, u ( x , y ) d y =  W, i.e. the mean velocity U*" equals 1. In the numerical solutions of 
the Navier-Stokes equation it turns out that the parabolic velocity profile is valid rather 
close to the cylinder and so it was sufficient for the following to choose as initial 
condition this profile along the line x = 0.0. 

The Navier-Stokes equation has been solved numerically by a functional method 
described in detail in 1121. In all the following numerical computations the value 
Re = EO is chosen, which is close to the lower boundary of the interval of periodic 
behaviour. This value of Re is based on the mean velocity and the diameter of the 
cylinder. For this value of Re the cycle time of the periodic solution has the value 
T, = 1.109. Here the unit of time is given by the quotient between the unit of length 
and us". Such a relatively small value of Re (large value of the viscosity) has the 
advantage, that at x = 1.0 the velocity profile comes close again to the parabolic profile 
given in equations (1) and (2). In the terminology of scattering theory at x =1.0 the 
outgoing asymptotic region is already reached and we can restrict the numerical 
computations to the x-interval X E  [O.O, 1.01. In particular, all vortices created behind 
the cylinder are damped out at x-0.6. 

Because of the reflectional symmetry in the line y = 0.1 of the geometrical arrange- 
ment of the channel, the velocity field has the following symmetry: 

U ( X , Y ,  t ) =  U(X, W - Y ,  t +  T J 2 )  (3) 
u ( x , y , t ) = - u ( x ,  W - y , f + T , / Z ) .  (4) 
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Because of the incompressibility of the fluid there exists a function Jr(x, y,  t )  such 
that 

a 
~ ( X , Y , f ) = - ~ w ’ Y > f )  (6) 

for all x, y,  I. The level lines of Jr for fixed t are the stream lines of the flow. Figure 
2 ( a )  gives a plot of the stream lines at time f = 0 mod T,, where we have chosen the 
zero of time arbitrarily. If the velocity field were stationary, then the stream lines would 
coincide with the trajectories of the fluid particles. Figure 2 ( b )  shows the stream lines 
at a time I = TJ4 mod T,. 

0.2 

0.0 

0.0 

-. .......................... 

...................... -- 
0.0 

~ ---- --I 
4 0  1.0 

Figure 1. Stream line5 of the flow at time I, where 1 = 0 in part ( a ) ,  and 1 = TJ4 in pan ( b ) .  

From figures 2 and the symmetry properties of the flow we can imagine the time 
development of the velocity field. Behind the cylinder vortices are created, two in 
number within any time interval of length T,, one in the upper half and the other one 
in the lower half of the channel delayed by a time TJ2.  The vortices first grow in size, 
then they become detached from the cylinder and start to drift along the channel. Now 
the viscosity of the fluid becomes important for their destabilization and destruction 
after a short length of travel. 

Next consider a passive marker particle which is placed into the fluid at time I = fin 

in position x=xin,  y = y i .  and let it swim with the fluid through the channel. The 
trajectory of this particle is the solution of the following equations of motion: 

with the initial conditions x( l i , , )  =xi”, y ( I J  = y i , .  Equations ( 7 )  and (8) have exactly 
the same structure as the Hamiltonian equations of motion for a particle moving along 
a one-dimensional position space under the influence of an explicitly time-dependent 
force. We have to make the following identifications: x +  q where q is the position of 
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the particle, y + p where p is the canonically conjugate momentum of the particle, 
$(x, y, 1 )  -* H ( q ,  p ,  t )  where H is the explicitly time-dependent Hamiltonian function 
of the dynamics. Accordingly, the plot of the stream lines as shown in figure 2 can 
also be interpreted as the level lines of the Hamiltonian function at fixed time. For 
x -* -m or x + +a, $ does not really depend on either x or on t, but on y only. In 
the same way for q -* --oo or q -f +m, H does not depend on either q or on t, but on 
p only. Therefore, asymptotically the particle moves with constant speed and we can 
view the limit q -* +m or x + *cc as the asymptotic limit of scattering theory. 

It is well known that explicitly time-dependent Hamiltonian systems with one 
degree of freedom can show chaotic behaviour of essentially the same type as 
autonomous systems with two degrees of freedom. If the system is open as in the case 
of our present model system, then almost all trajectories come in from the incoming 
asymptotic region, they may exhibit complicated motion for a finite time in the region 
in which the dynamics is really time dependent, and disappear again into the outgoing 
asymptotic region. If the dynamics is chaotic at all, then we expect to see transient 
chaos or scattering chaos. In [ l l ]  an example for scattering chaos in an explicitly 
time-dependent one-dimensional system, namely the periodically driven Morse system, 
has been analysed in detail. In the present paper we shall show that our hydrodynamical 
system provides an example of essentially the same type of transient chaos via the 
analogy between the hydrodynamical flow in a two-dimensional position space and 
the Hamiltonian Row in the two-dimensional phase space. 

For a scattering system it is essential, to give a proper labelling of asymptotes. In 
our model system this can be done as follows: pick a particular value xin of x in the 
incoming asymptotic region (in our examples we shall take xin = 0.02) and record the 
y-coordinate and the time modulo T, at which the trajectory crosses the line x = xi". 
These two numbers yin and ti. label any incoming asymptote uniquely. 

3. Time delay function 

A clear criterion for transient chaos is the occurrence of a fractal set of singularities 
in the time delay function [3]. In our system this means in detail: take a one-dimensional 
subset of initial asymptotes e.g. fix yi., scan t i ,  and plot the time Df which the particle 
needs to reach the outgoing asymptotic region, e.g. the line x = 1.0. If the system 
contains transient chaos, then for appropriately chosen values o f  yi. this function has 
infinities on a fractal set along the ti,-axis and it has intervals of continuity in-between 
in the gaps of the fractal set. 

Figure 3(a) displays a representative example of Dt as function of tin, namely the 
example for yi. = 0.0995. We see smooth parts and places where the function shows 
rapid changes, which are not well resolved on  this scale. Figure 3(b) gives a mag- 
nification with improved resolution of a part of figure 3 ( a )  which contains places of 
complicated behaviour of the function Dt( ti"). Between the long intervals of continuity 
there appear shorter intervals of continuity, in which the values of Dt are significantly 
higher. However, these smaller intervals do  not fill up the whole axis, in-between there 
still remain small unresolved intervals of complicated behaviour. In the unresolved 
regions this behaviour under magnification continues forever. We see a typical Cantor 
set construction: on any level of the hierarchy there are intervals of continuity and 
unresolved complements in-between. On the next level we find new intervals of 
continuity inside the so far unresolved parts. After every step of this construction there 
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0 .1  0.4 0.e  0 .8  I I 
r. 

'I" 

- 
0.0 7 0.0 5 i 'I" 

Figure 3. Plot of the function Dl(1,") for y , .  =0.0995. Pan ( a )  shows this function on its 
whale domain. Part ( b )  shows a magnification in one of the small intervals containing 
singularities. The boundaries ofthe I,. interval of pan ( b )  are marked by arrows in part ( a ) .  

remain even more smaller unresolved parts than in the previous step. The Cantor set 
itself is the set of accumulation points of the boundaries of intervals of continuity. 
From level to level in this hierarchy the value of Df increases and on the Cantor set 
itself the function DI goes to infinity. 

A first clue to the mechanism behind this phenomenon can be obtained by an 
inspection of particle trajectories whose incoming asymptotes belong to different 
intervals of continuity. Figure 4 provides some exampies ior yin = 0.0995 and diiiereni 
values of fin as indicated in the figure caption. The plots of the trajectories consist of 
a sequence of points along it such that the time separation between adjacent points is 
TJ100. In part ( a )  we see a trajectory of a particle which needs only a short time to 
travel through the channel and which runs through quite straight. In contrast, the 
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. . . . . . .  . . . . .  Q-.e""'"' . . . . . . . . . . .  . . . . . . . . .  
...... 3 

I I 
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....... 

. . . . . . . . . . . . . . . .  . . . . .  . . . a y +  .......... 

Figure 4. Some particle trajectories in position space. Parts (a ,  b. e)  show scattering trajec- 
tories with yin=0.0995 and 1,,=0.4 in part ( a ) ,  1in=0.121404 in part ( b ) ,  and l in=  
0.121 4815inpan (e).Thevalues of D1 forthese trajectariesare 1.39,3.54,5.12respectively. 
Part (d) shows the simplest and most important periodic orbits of the system. The position 
of the panicles on these periodic orbits at time I = 0.3 mad T, are marked by open circler. 
These points are the fixed points r and i of the stroboscopic map taken at time TM = 0.3. 
T!!c t:e;ecta~c: PE represcstcd by P seq-e !~c  of pniat: which give the po;i:iae of the 
particle after each time step of length T,lIOO. The frames are x t [O.O. 1 .Ol, y t [O.O. 0.21 
as in figure 2. 

trajectory in part (b) ,  whose initial condition belongs to a smaller interval, traces out 
a longer and more complicated path containing loops. Accordingly it needs a longer 
time to reach the outgoing asymptotic region. Part ( c )  shows a very long and complicated 
trajectory starting in an even smaller interval. It contains many loops behind the 
cylinder because the marker particle gets trapped by the vortices sitting there for a 
while before it is freed again and continues its journey along the channel. 

Now we explain the structure of the time delay function in terms of the influence 
of the cylinder and of the vortices on the particle motion. In a very coarse approximation 
we can disregard all fine structure of this function, i.e. remove all small intervals with 
high values of Dt and in particular all singularities. There remains a sawtooth function 
of the following shape: there is a linear part Dt = c - tin in the interval fin E (0,0.99. . .) 
and a linear part Dt = c - fin + T, in the interval tin E (0.99 .... T,). If we consider that 

slope -1 reaching from q+ E to ?j - E, where the point of jump 7; = 0.99.. . ; i.e. in 
ti, = 0 and ti. = T, have to be identified, then we have just one single straight line of 

highest order of the fractal hierarchy the Dt function is described by a sawtooth 
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function with a jump of height T, at fin = and a slope of -1 otherwise. This can be 
interpreted in terms of the particle trajectories as follows: if the particle starts its 
motion at fin = T, - E then it passes the vicinity of the cylinder in the shortest possible 
time. If it starts at some earlier time fin= ‘I-T then in the vicinity of the cylinder the 
particle waits for a time T until the velocity field of the fluid has reached the same 
state as for the former trajectory. If the particle starts at time ti. = I; t E then it has to 
wait for nearly a whole period T, at the cylinder before it can continue its journey. 
This behaviour indicates that behind the cylinder the particle is trapped until a new 
vortex is created on the appropriate side and detaches from the cylinder transporting 
the particle away within it. 

If the particle stays attached to this vortex, then it is taken away and as soon as 
the vortex is destroyed by viscosity further down the channel, the particle finds itself 
in the laminar asymptotic flow. This is the complete fate for all particles with small 
V ~ L U C I  U, U I  W*IIVIC L ~ P J C C L U L L C ~  vciuug LU LU= IUILB I I I I S L Y ~ S  U, ~ur~rriwrry 111 irgure >. 

For small intervals of appropriate initial conditions the particle does not stay with 
the same vortex but switches from one particular vortex to another one by the following 
mechanism: in time-independent velocity fields, the particle trajectories coincide with 
the stream lines for fixed time. Then it would be impossible for a particle ever to enter 
a vortex from outside or to leave it from inside. However, when the velocity field is 

can be overrun by a vortex and come inside of it. After a while the particle may be 
left behind the vortex again. If it leaves one vortex at just the appropriate time and at 
the right place, then it may be overrun by the next vortex and be trapped by it for a 
while, etc. So a particle can be handed over from one vortex to the next one and stay 
in the region behind the cylinder for a long time, even though each individual vortex 
leaves this region quite soon. For this effect to occur, it is necessary that the particle 
motion is synchronized to the vortex motion such, that inside the growing and moving 
vortex the particle is moved from the front, where it is captured, t o  the rear, where it 
is released again. Thereby the particle is set back in position space by a diameter of 
a vortex relative to the moving vortex itself. Accordingly, for every time a particle 
changes from one vortex to the next one, it is delayed by approximately TJ2 when it 
switches between consecutive vortices on different sides of the cylinder and by approxi- 
mately T, when it switches between successive vortices on the same side. Those small 
intervals of initial conditions which allow for this mechanism to occur are the positions 
of the higher and smaller structures in figure 3. Of course, the longer a particle is 
supposed to remain trapped, the more precise the initial conditions of its incoming 
asymptote must be selected. Only for a subset of initial conditions of measure zero 
can the particle be trapped forever. 

A temporarily trapped scattering trajectory simulates the motion of localized orbits 
behind the cylinder. Therefore, in order to understand the complicated behaviour Of 
long scattering trajectories, it is necessary to study the properties of periodic and 
localized orbits in the system. The simplest truly periodic orbits are plotted in figure 
4(d). The upper one will be called y in the following and the lower one will be called 
7. They are related by the symmetries (3,4) and the time of revolution is exactly T, 
for both of them. They are unstable and they form the backbone of the transient chaos 
as will be evident in the next section. A particle revolving around y or around 7 is 
handed over from each vortex on one side of the cylinder to the next vortex on the 
same side indefinitely and it traces out just one loop in each member of this infinite 
sequence of vortices. 

..nl..ar -F n. . . . l . ~ . ~  +-..:a.+--:aa !-..I--- 1- A h -  I--.. :-A I -  -L. ---A:-..:&.. :- c - 

time dependent, the position ofthe vortices rh2nges 2g2inst the pzrtic!. 2nd !he partic!: 

! 
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4. Stroboscopic map 

Now we use some methods and the terminology of nonlinear dynamics without 
explaining them in detail. The reader not familiar with these issues and their applications 
to chaotic advection may consult the textbooks [13,14] and the review articles [15,16]. 

Next we give some information on the orbits y and by the study of the stroboscopic 
map taken for times 1 = TM mod T, where we have chosen TM = 0.3. The orhits y and 
.i. correspond io iwo fixed points r and i of this map. Tnese two points are inverse 
hyperbolic and their eigenvalues are p,  = 1/p2i= -80. 

By W " ( r ) ,  W'(r) ,  W"(F), W'(F) we denote the unstable and stable manifolds of 
r and F respectively. Figure 5 shows the positions of the fixed points r and i and some 
points of their stable and unstable manifolds in the stroboscopic plane. Because of 
numerical reasons we cannot show the complete invariant manifolds in their infinite 

Part ( a )  of figure 5 gives the unstable manifolds W " ( r )  and W " ( i ) ,  part ( b )  gives 
the stable manifolds W'(r)  and W'( i ) .  Part ( c )  shows all these manifolds in a smaller 
region of the stroboscopic plane. In part ( c )  adjacent points have been connected to 
result in continuous lines. Most important, in figure S(c )  are the homoclinic and 
heteroclinic intersections of the invariant manifolds. They imply the existence of an 

overcountable number of unperiodic truly chaotic points, whose trajectories are local- 
ized, i.e. the x coordinate of all iterated images and pre-images does not leave the 
region directly behind the cylinder. All these localized orbits taken together form the 
chaotic saddle A and they all have their stable and unstable manifolds reaching out 

:eng:h having an inhke nuiiibe; aftend;i!s but 0n:y a f i k e  niiiiiLvzi of points afthziii. 

infinite nl?lll.her of unstah!e periodic points af .M with 2rhitrzri!y !a"g period .Ed 1" 

m-.. ...., --w 

0.054- 
, _ - -  I 

0.2 5 4 5 s  

Fi~"r*j,  - L - C ~ ~ l  ~ ~ : ~ ~ . - .  ..I z ,-...,LA A L  -....:-"I".:- - " - , " l > - - > " - - . - ! ~ ~ ~ ~  
, 1 1 5  I I X F Y  p""'," I &,I" I ,",.,"LCY Y) Y F "  C I . C I I a  111 V'01L 1 ' 1 ,  Oll"  ="mu< P1E"CS 

of  their invariant manifolds in the stroboscopic plane for J ,  =0.3.  Part ((1) gives the 
unstable manifolds, part ( b )  gives the stable manifolds. Part ( e )  shows the initial segments 
of the stable and the unstable manifolds including a few homoclinic and heteraclinic 
intersections. In part ( e ) ,  W ' ( r )  is represented by the thick solid line, W " ( r )  by the thin 
solid line, W ( i )  by the thick broken line, and W ( i )  by the thin broken line. 
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into the asymptotic region running essentially parallel to the invariant manifolds of r 
and i. 

Figure 6 shows two ofthe trajectories belonging to some homoclinic and heteroclinic 
points of figure S(c). In figure 6 ( a )  we see a heteroclinic trajectory. It  converges towards 
y for f + +m and towards 7 for f -* -m. The middle part of this heteroclinic trajectory 
(i.e. the segment represented by the sequence of crosses) gives an impression of how 
a particle is handed over from one vortex to the next vortex on the other side of the 
cy!inder. Eefnre and after this se!itary cmssing eve:, :‘.e pa“ic!e cii the heteiocfinic 
trajectory always remains on one side of the cylinder. Figure 6( b )  presents a homoclinic 
trajectory. For f + -a as well as for f + +m it converges towards y.  Figure 6( b )  
illustrates the mechanism by which a particle can increase its delay time by the value 
T, while it stays close to the cylinder. Along this homoclinic trajectory the particle 
circles around the periodic trajectory y many times, then it leaves y temporarily, it 
comes closer to the cylinder and within the next time interval of length T, it moves 
upwards close to the wall of the cylinder with very small velocity. Finally it comes 
back to y and continues to circle around it. In the long run the particle on this 
homoclinic trajectory has made one revolution less than a particle which stays on y 
always. 

0.06’1 
0.2, 0.58 

Figure 6. Part ((1) shows a heteroclinic trajcaory (marked by crosses), which switches 
from 7 to y (these periodic orbits are drawn as solid lines). Part ( b )  shows a homoclinic 
trajectory to the periodic orbit y. The arrows indicate the orientation of motion. 

Scattering trajectories are complicated and have a large time delay when they come 
close to localized orbits of A, i.e. when they start close to stable manifolds of A. 
Therefore a knowledge of the location of these stable manifolds in the initial asymptotic 
region explains the pattern of the singularities in the time delay function. Experience 
with other systems has shown that the bundle of invariant manifolds of a chaotic 
saddle is locally the Cartesian product of lines with a Cantor set. The manifolds of 
any particular periodic point of the saddle are placed in this bundle in such a way 
that the topological closure of this subset contains the whole bundle. So we can choose 
the manifolds of the most simple periodic points (they are r and i in our case) to 
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represent the structure of all the invariant manifolds of A. Next the intersection Of 

W ( r )  and W(i) with the plane of incoming asymptotes is constructed in order to 
indicate which initial conditions lead to trajectories coming close to localized orbits: 
we take points on W'( r )  and Ws(i ) ,  construct the corresponding trajectories, run them 
backwards in time until they intersect the line x =0.02. At this moment we record the 
values of y and 1 mod T, and plot these values into the asymptotic plane to obtain 
figure 7. Again we can only show a finite number of points of a structure which really 
consists of a fractai pattern of lines wound up to an infinite number of tendriis. iine 
stable manifolds of all other periodic orbits intersect this plane in lines running close 
to the ones coming from y and T ;  i.e. the stable manifolds of all orbits of A intersect 
the incoming asymptotic plane in a fractal arrangement of lines which is well represented 
by the contributions from y and + only. The obvious symmetry of figure 7 is caused 
by the symmetry (3,4) of the velocity field. 

0.002 sin 0.108 

Figure 7. Intersection of the stable manifolds of y and with the initial asymptotic plane. 

Now we are ready to understand the occurrence of the complicated behaviour of 
the system: whenever an initial condition of an incoming scattering trajectory lies 
exactly on a stable manifold of a localized orbit, then this scattering trajectory converges 
towards this localized orbit and gets trapped in the region behind the cylinder. Of 
course, this can only happen for a subset of initial conditions which has measure zero 
in the set of all initial conditions. When the scattering trajectory starts close to stable 
manifolds of A but not exactly on top of them, then it comes close to localized orbits 
and runs along orbits of A for a finite time. The closer the trajectory starts to stable 
manifolds, the longer it will run in the neighbourhood of orbits of A and the longer 
it takes until it finds its way out of the region directly behind the cylinder. If the initial 
conditions of two scattering trajectories are arbitrarily close to each other but lie on 
different sides of a stable manifold, then these two trajectories iook simiiar untii they 
come close to the localized orhit belonging to this stable manifold. They pass this 
localized orbit on different sides and from then on these two scattering trajectorie_s 
show qualitatively different behaviour and their total time-of-flight can differ by a large 
amount. Because of the chaotic saddle, there is a fractal arrangement of dividing 



3940 

unstable periodic orbits and a small bundle of incoming scattering trajectories can be 
split into an infinite number of sub-bundles which all behave qualitatively different. 
This is the scattering version of the sensitive dependence on initial conditions, which 
is a criterion.for chaos. 

Because of the existence of heteroclinic connections the scattering trajectories can 
switch from the neighbourhood of one periodic orbit to the neighbourhood of another 
one and visit the vicinities of several periodic orbits in a great variety of orders. By 
this arbitrary switching the trajectories of the completely deterministic system can 
realize random sequences. Generic scattering trajectories having proper in and Out 
asymptotes can trace out sequences of finite length only. Those trajectories of measure 
zero, which get stuck in the interaction zone, can realize one-sided infinite sequences. 
Only the chaotic localized orbits belonging to A can realize two-sided infinite sequences. 

If we take the line L defined by y = 0.0995 in figure 7, then we pick out the initial 
conditions used in figure 3. A comparison shows that the intersection between L and 
the stable manifolds of A mark those values of fin at which Df becomes large. Figure 
7 provides an overview, for which values of y , .  singularities of the function Df(f in)  
are to be expected. They occur for y,. E I,= 10.093 . . . ,0.107 . . .I, i.e. for values of y,. 
such that the line of constant yi, intersects the stable manifolds of A. In particular, 
for initial values of yi. outside of I ,  the particles never show chaotic motion. They 
pass the region behind the cylinder quite straight and sufficiently close to the wall in 
order to be unaffected by the vortex street. Only the incoming particle stream between 
yi. = 0.093 and yi, = 0,107 gets involved with the vortex motion behind the cylinder. 
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5. Quantitative measures of the chaotic saddle 

Up to now we have only investigated the topological structure of the system. Next let 
us briefly consider a few quantitative properties of the chaos. 

When a chaotic saddle A is purely hyperbolic (i.e. if it does not contain any elliptic 
periodic orbits and not any KAM tori) then we expect that the relative probability 
W(Df) to find a scattering trajectory with a time delay of Df is given in the limit of 
large Df by the exponential law: 

W ( D t ) = ~ e x p ( - D f . ~ )  (9) 

K is the escape rate of A [3]. When there are elliptic periodic orbits and KAM tori, 
then this behaviour is changed to a power law for very large Df.  In our system we did 
not find elliptic periodic orbits and no large KAM tori. However, we are not able to 
prove the hyperbolicity of A and probably there exist small KAM tori. I f  these K A M  

tori are sufficiently small, then they do  not have a significant influence on the scattering 
behaviour and for values of Df which are not extremely large we expect (9) to hold 
in good approximation. 

To construct figure 8 the following is done: the Dt-axis is cut into boxes of length 
0.5, several thousand trajectories with y , .  = 0.0995 and fin distributed evenly have been 
run and their values of D f  have been monitored and collected into the boxes. In figure 
8 the logarithms of the count rates of the various boxes between Df = 3.0 and DI =7.0 
are displayed. The points are located approximately on a straight line with slope -1.4 
leading to an estimate of 1.4 for the value of K. This value is a measure for the effective 
total instability of A. If we are interested in the value of K related to the stroboscopic 
map, then we have to multiply the value given above by T,. 



Scaiiering chaos in hydrodynamics 3941 

3.0 DT 7.0 
Figure 8. Logarithm of the relative probability for values of Dt. The broken line with siope 
-1.4 gives the linear approximation 10 this function. 

The number N ( S )  of disjoint intervals of continuity of Dt(i,,) which contain any 
trajectory with Df < S, is expected to behave in the limit of large S like 

N ( S )  = exp(K,. S /  T,) (10) 

where KO is the topological entropy of the system [3]. For the validity of (10) analogous 
restrictions with respect to hyperbolicity hold as the ones for (9). Unfortunately the 
numerical precision of our computation is not sufficiently good to identify intervals 
for very high values of S. Therefore we cannot give a precise value for KO but only a 
rough estimate in the order of KO = 0.8. 

6. Final remarks 

We have analysed a two-dimensional incompressible hydrodynamical system which 
can visualize the flow in phase space of a Hamiltonian system with one degree of 
freedom. Because the hydrodynamical system is open, it corresponds to an open 
Hamiltonian system and the type of chaos which can occur in the explicitly time- 
dependent case is scattering chaos or transient chaos. In our case the hydrodynamical 
velocity field is exactly periodic in time and therefore the solution of the Navier-Stokes 
equation is not chaotic, it is a stable limit cycle. What is chaotic in the hydrodynamical 
system are the trajectories of passive marker particles. Therefore we encounter a case 
of Lagrangian turbulence or  chaotic advection and because the chaos is transient, we 
can call this kind of behaviour ‘transient Lagrangian turbulence’. 

We have based our demonstration on  numerical computations and the reader may 
ask, whether numerical errors have any essential influence on the results. We are 
confident that the qualitative results do not depend on numerical errors because they 
have a similar effect to small changes of the system itself and the scenario presented 
in this paper is structurally stable against small deformations of the system in the 
following sense: the central point for the existence of topological chaos ark the periodic 
orbits y and f, the corresponding fixed points r and i in the stroboscopic plane and 
the transversal intersections of their invariant manifolds. Because the eigenvalues 
of these fixed points are far away from the unit circle, the periodic orbits do  not change 
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their qualitative properties under small deformations of the system. They will be 
displaced a little only. Also the invariant manifolds may become deformed, but, most 
important, the existence of transversal intersections remains. The existence of these 
intersections is the essential criterion for the creation of topological chaos and in 
particular for the existence of the chaotic saddle A, 

The connection between scattering and hydrodynamics opens a new method to 
investigate the mechanism of scattering chaos in experiment. Vice versa, it allows 
application of the methods developed for scattering chaos to the analysis of open 
hydrodynamical systems. This is interesting since experiments on hydrodynamics in a 
channel containing an obstacle have already been done (for some examples see [17-19]). 
However, so far these experiments have not yet been analysed and interpreted in terms 
of scattering chaos. 

The phenomenon of chaotic advection may also have a practical applicability: if 
we have to manage the irregular distribution of a stream of particles injected into a 
flow, then it is not necessary to make the flow itself turbulent. Even a regular, exactly 
periodic flow can lead to the desired irregular behaviour of the injected particles, This 
regular flow can be realized with lower Reynolds numbers and thereby perhaps with 
smaller effort. 

Some readers may find it disturbing that in our model system the asymptotic form 
of the flow in the channel corresponds to a Hamiltonian whose asymptotic form is 
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Ha,= uopZ(0.3-p)/3 (11)  

where p is the canonical momentum of the particle. This is not the usual form of the 
kinetic energy of a particle. However, with a little more effort we can construct a 
hydrodynamical system, which reproduces the usual form of the kinetic energy of a 
free particle: let the walls of a n  empty channel be placed at y = + D  and y = -D. Let 
the upper wall move to the right with velocity U = D / m  and let the lower wall move 
to the left with velocity U = - D / m .  We do not need any further pump for the motion 
of the fluid. If D / m  is not too large, then the velocity field of fluid is given by 

U ( X , Y ) = Y I m  (12) 

u(x,  y )  = 0. (13) 

The corresponding I) function has the form 

J, (X ,  Y )  = Y ’ /2m.  (14) 

This is the usual form of the kinetic energy if we identify as before y with the momentum 
of the particle, m with its mass and J, with the Hamiltonian function. Next let D be 
sufficiently large and place an obstacle with size small compared to D into the middle 
of the channel. This causes a modification of J, in the vicinity of the obstacle and we 
can interpret this modification of J, which depends on y ,  x and possibly on f as a 
localized interaction part of the Hamiltonian. In this way it is possible to simulate a 
Hamiltonian scattering system with the usual asymptotic structure. 
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